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Finite-size scaling of synchronized oscillation on complex networks
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The onset of synchronization in a system of random frequency oscillators coupled through a random network
is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks
of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks
with the degree distribution P(k) ~ k™7 at large k, we found that the finite-size exponent v takes on the value 5/2
when y>35, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3
< y<5), v and the order parameter exponent 8 depend on y. The analytical expressions for these exponents
obtained from the mean-field theory are shown to be in excellent agreement with data from extensive numeri-

cal simulations.
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I. INTRODUCTION

The popularity of complex networks in the description of
interactions among individuals in various biological and so-
cial contexts has inspired theoretical studies of ordering phe-
nomena on networks in recent years [1]. The small-world
properties of such networks, as emphasized first by Watts
and Strogatz [2], suggest that a simple mean-field (MF) de-
scription of the ordering transition is often appropriate [1,2].
More complicated situations may arise as in, e.g., scale-free
networks with a low degree exponent, where heterogeneity
in the network topology smears out the transition signifi-
cantly [3—8]. In general, randomness in network connections,
which can be considered as a form of quenched disorder, can
have a profound effect on the ordering process and the ensu-
ing scaling behavior. This is a topic in network research that
has not been sufficiently explored so far.

Synchronization of coupled oscillators is a representative
dynamical problem on complex networks [1]. By varying the
coupling strength J among the oscillators, various dynamical
phenomena can be observed, ranging from independent os-
cillators at J=0 to a fully synchronized state at J>J;. The
desynchronization threshold J, is an important property in
many applications, and its dependence on the network topol-
ogy has been investigated in great detail [9]. For coupled
oscillators with a distribution of intrinsic frequencies
[10-13], a finite fraction of the population can remain en-
trained in frequency even in the presence of a large number
of runaway oscillators. The entrained cluster of oscillators
disappears only at a (much) lower coupling strength J... Near
the entrainment threshold J,, strong fluctuations in various
static and dynamic properties of the system are expected, as
in the usual critical phenomena.

The entrainment transition on scale-free networks with a
degree distribution P(k)~k~" has been treated analytically
by several groups [14—-16]. It has been shown that, in the
infinite-size limit, J, takes a finite value for y>3, but van-
ishes when y=3. The critical exponent S that describes the
vanishing behavior of the order parameter on the supercriti-
cal side is shown to be equal to 1/2 for y>5 and 1/(y-3)
for 3<y<5[15].
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For systems of finite size, the entrainment transition be-
comes blurred and rounded over a range of the coupling
strength. In addition, randomness in the network topology, as
well as the random choice of oscillator frequencies, intro-
duces sample-to-sample variations in the entrainment thresh-
old. A full description of the finite-size effects, which re-
quires a detailed characterization of dynamic fluctuations in
specific samples, is currently not available [17,18]. Fortu-
nately, in the case of the globally coupled Kuramoto model,
where the mean-field theory works well on the supercritical
side, the sample-to-sample fluctuations of the order param-
eter can be characterized analytically [19]. Comparison with
numerical simulations indicates that temporal fluctuations of
the order parameter play only a subdominant role in the
broadening of the transition region due to finite size [19,20].
The success of this approach suggests a novel procedure to
derive finite-size scaling (FSS) relations under a MF ap-
proximation.

In the present paper, we extend the above MF treatment to
coupled random frequency oscillators on complex networks.
Unlike the globally coupled case, the MF equations derived
here are not expected to be exact due to the finite connectiv-
ity of individual vertices on the network. Nevertheless, as we
show below, the FSS exponents obtained depend only on
certain general properties of the network. We also present
results from extensive simulations on uncorrelated scale-free
networks. The numerically determined values of the expo-
nents as a function of the degree exponent y of the network
agree well with the analytical predictions. Our study indi-
cates that the FSS at the entrainment transition on uncorre-
lated scale-free networks is also governed by fluctuations in
the distribution of intrinsic oscillator frequencies, whereas
temporal fluctuations of the order parameter play only a sub-
dominant role.

The paper is organized as follows. In Sec. II we introduce
the dynamical model and derive the mean-field equations.
Section III contains a treatment of the mean-field equations
in the neighborhood of the entrainment transition. A finite-
size scaling form for the order parameter is obtained. Results
from numerical simulations of the model are presented in
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Sec. IV and are compared with the analytical predictions.
Section V contains a brief summary of our results.

II. THE MODEL AND MEAN-FIELD EQUATIONS
A. The model

An undirected network of N vertices is defined by the
adjacency matrix {a;¢}, where a;,=1 if two vertices j and €
are connected and 0 otherwise. The degree of a vertex j is the
number of vertices connected to j, denoted by k;=2a;.
With each vertex j we associate an oscillator whose dynam-
ics is described by the equation of motion for the phase ¢,

N
bi=w;—J2 aj sin(d;— ¢y), (1)
=1

where w; is the intrinsic frequency of the oscillator. The sec-
ond term on the right-hand side of Eq. (1) denotes coupling
to neighboring oscillators on the network with a positive
strength (J>0).

In this paper, the oscillator frequencies w; in a given
sample are drawn independently from a distribution g(w)
which is assumed to be a smooth function and symmetric
about its maximum at w=0. In addition, we shall limit our-
selves to random networks with no degree-degree correlation
among neighboring vertices. An algorithm that generates
such a network with no self-linking nor multiple links be-
tween vertices is discussed in Ref. [21]. The numerical re-
sults presented in Sec. IV are for scale-free networks gener-
ated using the static model of Ref. [22].

B. The mean-field approximation

At sufficiently strong coupling, the system described by
Eq. (1) exhibits a synchronization phenomenon where a fi-
nite fraction of oscillators in the system become entrained in
frequency. A transition to the random state at a critical cou-
pling strength J. has been considered at the mean-field level
by several authors [14-16]. To understand the general idea
behind such an approach, let us first introduce a set of in-
stantaneous local fields defined by

0= aje, )
€

where H;=0 denotes the amplitude and 6; the phase. Equa-
tion (1) can now be written in a more suggestive form,

b= w;— Hyl sin(¢; - 0)). ®)

As usual, the mean-field approximation decouples the set of
N dynamical equations by replacing H; and ¢, with suitable
time-averaged quantities which are then determined in a self-
consistent manner. Unlike the globally coupled Kuramoto
model, such a mean-field treatment is not exact due to the
finite connectivity of individual oscillators on the network,
so dynamic fluctuations are not averaged out even for an
infinite system. However, provided the network is suffi-
ciently well connected (not fragmented into local “commu-
nities”), and because of its small-world properties, once a
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cluster of entrained oscillators is formed, it will affect the
dynamics of all oscillators in the system through a global
“ordering field” H exp(if)). The precise effect of the global
field on individual oscillators is subject to renormalization by
the local community of a given oscillator. For a well-
connected network, it is reasonable to expect that renormal-
ization of the oscillator’s response function does not change
qualitatively the results of the mean-field theory where such
effects are ignored. This is to be confirmed by numerical
investigations.

With the above caveat, let us proceed to the derivation of
the mean-field equations, with particular emphasis on the
finite-size effect. The key approximation we introduce is to
replace each phase factor ¢/?¢ in the sum in Eq. (2) by the
global ordering field H exp(i#) acting through the edge con-
necting vertices j and €. Equation (3) now becomes

Consider a steady-state situation with a constant H and a
linearly advancing 6=, where () is the phase velocity of
the entrained cluster. From Eq. (4), one can find that the
oscillator at vertex j is entrained with

;= 0+ sin™'[(w; = Q)/(k;HJ)] (5)

if |w;— Q| =k;HJ, and detrained otherw1se In the latter case,
the time- averaged value of ¢'4~? is given by

:i(J_o;}I;y){l_ \/1_(J_;;fj;)2]. ©

J

Here and elsewhere the overbar denotes the time average.

The self-consistent equations for H and () are obtained by
setting H equal to the average of ¢/(%~? over all edges of the
network. Since each vertex j contributes k; times to the av-
erage, we may write

S,

Hed —  _

1
Sk N (7)
j

2w

= l\k

Here (k) is the average degree of a vertex in the network.
Substituting Egs. (5) and (6) into Eq. (7), and separating out
real and imaginary parts, we obtain

——E‘L\r - 100 -1, (8)
j—l <k>

N
0= (0,-O[1-1-20(f|-1],  ©)
j=1

where f;=(w;—Q)/(k;HJ), and O(x) is the Heaviside step
function, which takes the value 1 for x=0 and 0 otherwise.

Equations (8) and (9) are our mean-field equations for a
given network of N oscillators with a particular set of intrin-
sic frequencies {w;}. They are invariant under a uniform shift

of all oscillator frequencies (with a corresponding change in
Q).
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At any value of J, Egs. (8) and (9) admit a trivial solution
H=0 (with arbitrary (). In the next section, we shall analyze
nontrivial solutions that appear above the entrainment thresh-
old J,, paying particular attention to sample-to-sample varia-
tions when N is finite.

III. SOLUTION OF THE MEAN-FIELD EQUATIONS

From Egs. (8) and (9) it is obvious that the solution for H
depends not only on the coupling strength J but also on the
particular choice of the intrinsic frequencies {wj} and the
particular network topology in a given sample. For suffi-
ciently large N, it is possible to give a statistical description
of the sample-to-sample fluctuations. As we show below, the
analysis also yields the finite-size scaling of critical proper-
ties in the neighborhood of the entrainment transition. With
the unimodality and the symmetry of g(w) about w=0, we
shall seek a solution at )=0 and ignore weak finite-size
corrections which do not alter our main conclusions.

A. Self-averaging in the infinite-size limit

To proceed, let us write Eq. (8) in a symbolic form,

H=Y(H), (10)

sk (e M)
W (H) ,2‘{53 (EHLJ)@)(I_@HJ' (11)

Terms in the sum can be grouped according to their degree
kj. When the network size N— o, the number of terms in
each group at a given k grows linearly with N, and hence
self-averaging over the distribution g(w) is expected. This
consideration leads to the result

where

lim W(H) =(V(H))= 2 P(k)ku(kHJ).

V) = N—oo (k)%

(12)

Here P(k) is the degree distribution of vertices on the net-
work, and

u(x) = fx dw g(w)\1 — w?/x* (13)

is a monotonically increasing function of x which approaches
1 as x—oc. For small x, u(x)=(7/2)g(0)x+(7/16)g"(0)x>.

We now consider the behavior of W(H) at small H, as-
suming (k*)=3,k*P(k) to be finite [i.e., P(k) falls off faster
than k= at large k]. To facilitate the analysis, we introduce
the function

i(x) = gg(mx —u(x), (14)

which grows as x* for small x. Substituting Eq. (14) into Eq.
(12), we obtain
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2
W(H) = Zi’,‘c;g(ow— W(H), (15)
where
V(H) = %E P(k)kii(kHJ). (16)
k

The functional form of W(H) at small H depends on the tail
of the degree distribution P(k). If P(k) falls faster than k> at
large k, we may use the small-x expansion of #(x) to obtain

. _ <_ 3

V(H) = ¢, ® (JH)”, (17)
where co=—(7/16)g"(0) is a positive constant. On the other
hand, if P(k)=Ak™” at large k with 3<y<35, (k*) diverges
and the above expansion becomes invalid. Instead, contribu-
tions to the sum in Eq. (16) come mainly from vertices with
k~ (JH)™'. Since the fraction of vertices in this degree range
is proportional to k~?*!, and each contributes an amount k to

the sum, we estimate W(H) ~ (JH)*"2 in this case. More pre-
cisely, replacing the sum over k by an integral, we obtain

W(H) = é : dk P(k)ki(kHJ) = % ’ dk Ak~ "V i(kHJ)
=c¢,(JH)"2. (18)

Here ¢, =Ak)™" [;dx x~""'i(x) is another positive constant.

B. Sample-to-sample variations in a finite network

To work out the statistics of the sample-to-sample fluctua-
tion SW(H)=WV(H)-V(H), we note that W(H) can be
viewed as the mean value of the random variable

o) M)
<k> 1_(kHJ) ®(]_kHJ (19)

over N realizations. From the central limit theorem, we ex-

w,k) =

pect SU(H) to satisfy the Gaussian distribution with zero
mean and a variance given by

()= )~ () = 2o, (20)

As (n)=V(H)~ H at small H, we only need to focus on

2 kHJ ® 2
<k>2fkmd“’g(“’){l_<@) ] @)

close to the transition. If P(k) falls faster than k™* at large &,
the above expression can be easily evaluated at small H to
give

()= E P(k)

3
3§];>zg(0)JH (22)

On the other hand, if P(k)=Ak™" with 3<y<4, we may
replace the sum over k by an integral, which yields

D(H) = (1) =
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D(H) = d,(JH)", (23)

where d;=Ak)™>[{du u*7[" do g(w)(1-w?/u?) is another
positive constant.

Summarizing the above results, in the neighborhood of
the entrainment transition, we may write the self-consistent
equation (10) for H in the form

H=(JIJ)H - c(JH) + d(JH)?"*N~"?¢, (24)

where ¢ and d are positive constants, and J,
=2(k)/[ 7wg(0){(k*)] (mean-field value) is the critical coupling
strength at the transition. The term & is a Gaussian random
variable with zero mean and unit variance that represents the
combined effect of the particular choice of oscillator fre-
quencies and network connections in a given sample. The
exponents p=3 and ¢g=1 when the degree distribution P(k)
decays sufficiently fast at large k. For power-law distribu-
tions P(k) ~ k™, p switches to the value y—2 for y<<5. Simi-
larly, g switches to the value y-3 for y<<4.

C. Finite-size scaling

The network size N enters Eq. (24) through the last term.
At J=J,, a positive & (representing 50% of the samples)
yields a solution H~N-"?P=9 quite a bit larger than the
value N~ due to dynamic fluctuations on the detrained side
[23]. In addition, one can easily verify that the term ¢ affects
the solution significantly when J is within a distance of order
N-P=D/@r=4) from J,. These properties are summarized in the
scaling solution to Eq. (24),

H=NPY((J-J )N, (25)

where the exponents B=1/(p—1) and v=(2p—-q)/(p-1).
Unlike the usual FSS expression for pure systems, the scal-
ing function f(x) varies from sample to sample.

Using the above values for p and g, we obtain the follow-
ing results for the critical exponents for uncorrelated scale-
free networks:

p
! > >5
2 9’ 2 b ’y b
1 2v-5
B = —, L=, 4<y<s, (26)
y=-3 y-3
1 -1
. e , 3<y<4.
7-3 7o
In simulation studies, the order parameter
] N
A== (40 (27)
Nj=1

is usually measured. From the solution to the mean-field
equation (4), we obtain

_ l% - (—“’L)2<1 - M) (28)

NE k;HJ k;HJ

Following the same procedure as above in the calculation of
W(H), we obtain at small H
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A==gg«»@>nq+dgLHy”N4QE, (29)

where d>=[(4/3)g(0)(k)]"? and £ is another Gaussian ran-
dom variable which represents sample-to-sample variations.
It is easy to check that the strength of the last term in Eq.
(29) is weaker than, or at most comparable to, its counterpart
in Eq. (24). Hence the scaling behavior of A is the same as
that of H.

We note that the expressions for the FSS exponent ¥ in
Eq. (26) differ from those obtained by Lee [15] based on a
cluster analysis but without considering sample-to-sample
fluctuations. In fact, ¥ obtained here is always larger than
that in [15] for any y. We thus conclude that the broadening
of the entrainment transition in a finite sample by the random
distribution of oscillator frequencies (including the effect of
coupling through random connections) is more significant
than other effects such as those considered in Ref. [15].

IV. NUMERICAL RESULTS

To test the validity of our MF analysis, we have per-
formed extensive numerical simulations on the system gov-
erned by Eq. (1). Scale-free networks used in the simulation
are generated following Ref. [22], up to a system size
N=12 800. The intrinsic frequencies of oscillators are
drawn independently from the Gaussian distribution
g(w)=(2mo)™"? exp(—w?/20?) with unit variance (o°=1).
Heun’s method [24], with a discrete time step &:=0.01, is
used in the numerical integration. Typically, the motion is
followed for N,=4 X 10* time steps, with the initial condition
¢;=0 for all j. Data from the first N,/2 steps are discarded in
the measurement of time-averaged quantities. For each net-
work size, approximately 10* independent runs are per-
formed, with different realizations of the intrinsic frequen-
cies as well as network connection to obtain sample
averages.

To characterize the entrainment transition numerically, we
have focused on the order parameter defined by Eq. (27), or,
more precisely, A=(A,), where A,=|(1/N)E;V=l exp(i¢))| at
time ¢ and (---) denotes the sample average for a given sys-
tem size N. The critical coupling strength J. is estimated
from the crossing point in the plot of AN€ versus J,
varying the exponent €. Crossing of the Binder cumulants
By=1 —%{Af/ (Af)2> for different system sizes is also used to
estimate J, [20]. The transition point can also be identified in
terms of the diverging behavior of the dynamic susceptibility
X=NAT=(A,7).

At the critical point J=J,, the order parameter A exhibits
a power law: A~ NP7 The critical decay of A is used in our
analysis to further validate the value of J. and to determine
the exponent ratio 3/ v. With this value of /v, we estimate
the value of the FSS exponent v from the scaling plots of
ANPV against (J—J.)N"? for a broad range of system sizes,
by adjusting ¥ to achieve the best data collapse in the critical
region.
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FIG. 1. (Color online) Critical decay of the order parameter A
against system size N for y=7.07,4.48,3.75, where
J.=1.86(2),1.57(4),1.17(3), respectively. Lines are drawn with
slopes of —B/ v given by the theoretical prediction Eq. (26).

Figure 1 shows the order parameter A at J,. against the
system size N on a log-log scale for three different values of
the degree exponent . The critical values of J are given by
J.=1.86(2), 1.57(4), and 1.17(3) for y=7.07, 4.48, and 3.75,
respectively. Data points at a given vy fall nicely on a straight
line corresponding to the anticipated power-law behavior
A(J,) ~N~P" and the slope shows very good agreement with
the predicted value for B8/ 7 according to Eq. (26).
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Figure 2 shows the scaling plots of the order parameter A
for various system sizes at three different values of y. In each
case, the theoretically predicted values for the exponents as
given by Eq. (26) are used to compute the scaled values. The
data collapse is nearly perfect for y=7.07 and 4.48, and sat-
isfactory for y=3.75.

We have determined the values of 8/ v and v for a number
of other values of 7y following the above procedure. Figure 3
presents a summary of our results. Error bars are obtained
from uncertainties in the procedure. The two lines corre-
spond to our mean-field predictions. The agreement is gen-
erally good.

V. CONCLUSIONS AND DISCUSSION

In this paper, we investigated the effect of fluctuations in
the frequency distribution on the entrainment transition of a
system of coupled random frequency oscillators. Self-
consistent equations for the global ordering field are derived
for any given oscillator population on a complex network.
Statistical properties of the solution to these equations in an
ensemble of such networks of oscillators are determined. The
analysis enables us to derive a finite-size scaling expression
for the entrainment order parameter. Comparison with nu-
merical integration of the dynamical equations on scale-free
networks shows that the mean-field description correctly
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FIG. 2. (Color online) Scaling plot of A for

0 1

N=800,1600,...,12800 with (a)

y=7.07, using B/v=1/5 and

v=5/2, (b) y=4.48, using B/v=0.25 and v=2.68, and (c) y=3.75, using B/v=0.36 and v=3.67.
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FIG. 3. (Color online) B/ (squares) and 1/ (diamonds) are
plotted as functions of the degree exponent 7y, showing a good
consistency with the theoretical prediction represented by the full
line (B/v) and the dotted one (1/v), respectively.

captures the finite-size scaling behavior exhibited by the
time- and sample-averaged order parameter A. Values of the
exponents (B and v estimated from the numerical data show
excellent agreement with the mean-field predictions.

For scale-free networks with a degree exponent y>5, our
result for the exponents S=1/2 and v=5/2 is the same as
that of the globally coupled Kuramoto model. Randomness
in the network connection does not appear to affect these
values. On this ground we expect the result to be valid also
for randomly connected networks with a bounded degree
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such as the Erdos and Rényi network [25] and the small-
world networks of Watts and Strogatz [2]. However, the fi-
nite connectivity of oscillators on the network implies that
the dynamic fluctuations are not averaged out and can at
least renormalize the entrainment threshold J. given by the
mean-field theory. In this regard, analytic derivation of the
sample-dependent, self-consistent equation (24) beyond the
mean-field approximation would be desirable.

Another interesting aspect of synchronization which has
not been treated in the present paper is the formation and
stability of entrained nonspanning clusters in the subcritical
regime. This problem is particularly relevant to heteroge-
neous networks with a broad degree distribution. The usual
hyperscaling relation relates the exponent 7y,, which de-
scribes the divergence of the “susceptibility” y=N(A?)
~ (J.=J)™ ", with the exponents 8 and ¥: y,=v-28[26,27].
This relation has been shown to hold for the Kuramoto
model on a hypercubic lattice in high dimensions (d>4) but
not in the globally coupled case [19]. It would be interesting
to examine the behavior of y on scale-free networks with or
without degree correlation.
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